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Abstract
Programs written using a deterministic-by-construction model of
parallel computation are guaranteed to always produce the same
observable results, offering programmers freedom from subtle,
hard-to-reproduce nondeterministic bugs that are the scourge of
parallel software. We present LVars, a new model for deterministic-
by-construction parallel programming that generalizes existing
single-assignment models to allow multiple assignments that are
monotonically increasing with respect to a user-specified lattice.
LVars ensure determinism by allowing only monotonic writes and
“threshold” reads that block until a lower bound is reached. We
give a proof of determinism and a prototype implementation for a
language with LVars and describe how to extend the LVars model
to support a limited form of nondeterminism that admits failures
but never wrong answers.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Concurrent programming structures; D.1.3 [Con-
current Programming]: Parallel programming; D.3.1 [Formal
Definitions and Theory]: Semantics; D.3.2 [Language Classifi-
cations]: Concurrent, distributed, and parallel languages

Keywords Deterministic parallelism; lattices

1. Introduction
Programs written using a deterministic-by-construction model of
parallel computation are guaranteed to always produce the same
observable results, offering programmers freedom from subtle,
hard-to-reproduce nondeterministic bugs that are the scourge of
parallel software. While a number of popular languages and lan-
guage extensions (e.g., Cilk [14]) encourage deterministic parallel
programming, few of them guarantee determinism for all programs
written using the model.

The most developed parallel model that offers a deterministic-
by-construction guarantee for all programs—“developed” here
meaning mature implementations, broadly available, with many
libraries and reasonable performance—is pure functional program-
ming with function-level task parallelism, or futures. For example,
Haskell programs using futures by means of the par and pseq com-
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binators can provide real speedups on practical programs while
guaranteeing determinism [21].1 Yet pure programming with fu-
tures is not ideal for all problems. Consider a producer/consumer
computation in which producers and consumers can be scheduled
onto separate processors, each able to keep their working sets in
cache. Such a scenario enables pipeline parallelism and is com-
mon, for instance, in stream processing. But a clear separation of
producers and consumers is difficult with futures, because when-
ever a consumer forces a future, if it is not yet available, the con-
sumer immediately switches roles to begin computing the value (as
explored in previous work [22]).

Since pure programming with futures is a poor fit for produc-
er/consumer computations, one might then turn to stateful deter-
ministic parallel models. Shared state between computations al-
lows the possibility for data races that introduce nondeterminism,
so any parallel model that hopes to preserve determinism must do
something to tame sharing—that is, to restrict access to mutable
state shared among concurrent computations. Systems such as DPJ
(Deterministic Parallel Java) [6] and Concurrent Revisions [8, 19],
for instance, accomplish this by ensuring that the state accessed by
concurrent threads is disjoint.

In this paper, we are concerned with an alternative approach:
allowing data to be shared, but limiting the operations that can be
performed on it to only those operations that commute with one
another and thus can tolerate nondeterministic thread interleavings.
Although the order in which side-effecting operations occur can
differ on multiple runs, a program will always produce the same
externally observable result.2 Specifically, we are concerned with
models where shared data structures grow monotonically—by pub-
lishing information, but never invalidating it. These models support
pipelining for producer/consumer applications.

Existing monotonic models Consider two classic deterministic
parallel models, dating back to the late 60s and early 70s [16, 27]:

• In Kahn process networks (KPNs) [16], as well as in the
more restricted synchronous data flow systems [18], a network
of processes communicate with each other through blocking
FIFO channels. KPNs are the basis for deterministic stream-
processing languages such as StreamIt [15], which are narrowly
focused but have shown clear benefits in auto-parallelization
and hardware portability.
• In parallel single-assignment languages [27], “full/empty” bits

are associated with heap locations so that they may be writ-
ten to at most once. Single-assignment locations with blocking
read semantics are known as IVars [4] and are a well-established

1 With SafeHaskell enabled and, of course, no IO.
2 There are many ways to define what is observable about a program. In this
paper, we define the observable result of a program to be the value to which
it evaluates.



mechanism for enforcing determinism in parallel settings: they
have appeared in Concurrent ML as SyncVars [24]; in the In-
tel Concurrent Collections (CnC) system [7]; in languages and
libraries for high-performance computing, such as Chapel [9]
and the Qthreads library [29]; and have even been implemented
in hardware in Cray MTA machines [5]. Although most of these
uses incorporate IVars into already-nondeterministic program-
ming environments, the monad-par Haskell library [22] uses
IVars in a deterministic-by-construction setting, allowing user-
created threads to communicate through IVars without requiring
IO, so that such communication can occur anywhere inside pure
programs.3

In data-flow languages like StreamIt, communication takes place
over FIFOs with ever-increasing channel histories, while in IVar-
based systems such as CnC and monad-par, a shared data store
of single-assignment memory cells grows monotonically. Hence
monotonic data structures—those to which information is only
added and never removed—emerge as a common theme of both
data-flow and single-assignment models.

Because state modifications that only add information and never
destroy it can be structured to commute with one another and
thereby avoid race conditions, it stands to reason that diverse deter-
ministic parallel programming models would leverage the principle
of monotonicity. Yet there is little in the way of a theory of mono-
tonic data structures as a basis for deterministic parallelism. As a
result, systems like CnC, monad-par and StreamIt emerge indepen-
dently, without recognition of their common basis. Moreover, they
lack generality: IVars and FIFO streams alone cannot support all
producer/consumer applications, as we discuss in Section 2.

A general model By taking monotonicity as a starting point,
then, we can provide a new model for deterministic parallelism
that generalizes existing models and can guide the design of new
ones. Our model generalizes IVars to LVars, thus named because the
states an LVar can take on are elements of a user-specified lattice.4

This user-specified lattice determines the semantics of the put and
get operations that comprise the interface to LVars (which we will
explain in detail in Section 3.3):

• The put operation can only change an LVar’s state in a way that
is monotonically increasing with respect to the user-specified
lattice, because it takes the least upper bound of the current state
and the new state.
• The get operation allows only limited observations of the state

of an LVar. It requires the user to specify a threshold set of
minimum values that can be read from the LVar, where every
two elements in the threshold set must have the lattice’s greatest
element > as their least upper bound. A call to get blocks until
the LVar in question reaches a (unique) value in the threshold
set, then unblocks and returns that value.

Together, monotonically increasing writes via put and threshold
reads via get yield a deterministic-by-construction programming
model. We use LVars to define λLVar, a deterministic parallel cal-
culus with shared state, based on the call-by-value λ-calculus. The
λLVar language is general enough to subsume existing determinis-
tic parallel languages because it is parameterized by the choice of
lattice. For example, a lattice of channel histories with a prefix or-

3 That is, monad-par provides a Par monad, exposing effectful put and get
operations on IVars, but with a runPar method similar to runST.
4 As we will see in Section 3.1, this “lattice” need only be a bounded
join-semilattice augmented with a greatest element >, in which every two
elements have a least upper bound but not necessarily a greatest lower
bound. For brevity, we use the term “lattice” here and in the rest of this
paper.

dering allows LVars to represent FIFO channels that implement a
Kahn process network, whereas instantiating λLVar with a lattice
with “empty” and “full” states (where empty < full ) results in a
parallel single-assignment language. Different instantiations of the
lattice result in a family of deterministic parallel languages.

Because lattices are composable, any number of diverse mono-
tonic data structures can be used together safely. Moreover, as long
as we can demonstrate that a data structure presents the LVar inter-
face, it is fine to use an existing, optimized concurrent data structure
implementation; we need not rewrite the world’s data structures to
leverage the λLVar determinism result.

Contributions
• We introduce LVars (Section 3) and use them to define λLVar, a

parallel calculus that uses LVars for shared state (Section 4). We
have implemented λLVar as a runnable PLT Redex model.
• As our main technical result, we give a proof of determinism

for λLVar (Section 5). A critical aspect of the proof is a “frame”
property, expressed by the Independence lemma (Section 5.1),
that would not hold in a typical language with shared mutable
state, but holds in our setting because of the semantics of LVars
and their put/get interface.
• We describe an extension to the basic λLVar model that allows

destructive observations of LVars by means of a consume op-
eration, enabling a limited form of nondeterminism that ad-
mits run-time failures but not wrong answers (Section 7), and
we give an implementation of a data-race detector that detects
such failures in a version of λLVar that has been extended with
consume.
• We discuss how to formulate common data structures (pairs,

trees, arrays, FIFOs) as lattices (Sections 3.1 and 4.2) and how
to implement operations on them within the λLVar model—for
instance, we show how to implement a bump operation that in-
crements a monotonic counter represented as a lattice (Sec-
tion 7.1).
• We provide a practical prototype implementation of LVars as

an extension to the monad-par Haskell library, and give some
preliminary benchmarking results (Section 6).

All the code accompanying this paper is available at

https://github.com/iu-parfunc/lvars

which we refer to as “the LVars repository” throughout the paper.

2. Motivating Example: A Parallel, Pipelined
Graph Computation

What applications motivate going beyond IVars and FIFO streams?
Consider applications in which independent subcomputations con-
tribute information to shared data structures that are unordered,
irregular, or application-specific. Hindley-Milner type inference
is one example: in a parallel type-inference algorithm, each type
variable monotonically acquires information through unification
(which can be represented as a lattice). Likewise, in control-flow
analysis, the set of locations to which a variable refers monotoni-
cally shrinks. In logic programming, a parallel implementation of
conjunction might asynchronously add information to a logic vari-
able from different threads.

To illustrate the issues that arise in computations of this nature,
we consider a specific problem, drawn from the domain of graph
algorithms, where issues of ordering create a tension between par-
allelism and determinism:

• In a directed graph, find the connected component containing a
vertex v, and compute a (possibly expensive) function f over all

https://github.com/iu-parfunc/lvars


vertices in that component, making the set of results available
asynchronously to other computations.

For example, in a directed graph representing user profiles on a so-
cial network and the connections between them, where v represents
a particular profile, we might wish to find all (or the first k degrees
of) profiles connected to v, then analyze each profile in that set.

This is a challenge problem for deterministic parallel program-
ming: existing parallel solutions [1] often use a nondeterministic
traversal of the connected component (even though the final con-
nected component is deterministic), and IVars and streams provide
no obvious aid. For example, IVars cannot accumulate sets of vis-
ited nodes, nor can they be used as “mark bits” on visited nodes,
since they can only be written once and not tested for emptiness.
Streams, on the other hand, impose an excessively strict ordering
for computing the unordered set of vertex labels in a connected
component. Yet before considering new mechanisms, we must also
ask if a purely functional program can do the job.

A purely functional attempt Figure 1 gives a Haskell implemen-
tation of a level-synchronized breadth-first traversal, in which nodes
at distance one from the starting vertex are discovered—and set-
unioned into the connected component—before nodes of distance
two are considered. Level-synchronization is a popular strategy for
parallel breadth-first graph traversal (see, for instance, the Parallel
Boost Graph Library [1]), although it necessarily sacrifices some
parallelism for determinism: parallel tasks cannot continue discov-
ering nodes in the component (racing to visit neighbor vertices)
before synchronizing with all other tasks at a given distance from
the start.

Unfortunately, the code given in Figure 1 does not quite im-
plement the problem specification given above. Even though
connected-component discovery is parallel, members of the output
set do not become available to other computations until component
discovery is finished, limiting parallelism. We could manually push
the analyze invocation inside the bf_traverse function, allow-
ing the analyze computation to start sooner, but then we push the
same problem to the downstream consumer, unless we are able to
perform a heroic whole-program fusion. If bf_traverse returned
a list, lazy evaluation could make it possible to stream results to
consumers incrementally. But with a set result, such pipelining is
not generally possible: consuming the results early would create
a proof obligation that the determinism of the consumer does not
depend on the order in which results emerge from the producer.5

A compromise would be for bf_traverse to return a list of
level-sets: distance one nodes, distance two nodes, and so on. Thus
level-one results could be consumed before level-two results are
ready. Still, the problem would remain: within each level-set, we
cannot launch all instances of analyze and asynchronously use
those results that finish first. Furthermore, we still have to contend
with the previously-mentioned difficulty of separating producers
and consumers when expressing producer-consumer computations
using pure programming with futures [22].

Our solution Suppose that we could write a breadth-first traver-
sal in a programming model with limited effects that allows any
shared data structure between threads, including sets and graphs,
so long as that data structure grows monotonically. Consumers of
the data structure may execute as soon as data is available, but may
only observe irrevocable, monotonic properties of it. This is possi-
ble with a programming model based on LVars. After introducing
the λLVar calculus and giving its determinism proof in the next few

5 As intuition for this idea, consider that purely functional set data struc-
tures, such as Haskell’s Data.Set, are typically represented with balanced
trees. Unlike with lists, the structure of the tree is not known until all ele-
ments are present.

nbrs :: Graph → NodeLabel → Set NodeLabel
-- ’nbrs g n’ is the neighbor nodes of ‘n’ in ‘g’

-- Traverse each level of the graph in parallel,
-- maintaining at each recursive step a set of
-- nodes that have been seen and a set of nodes
-- left to process.
bf_traverse :: Graph → Set NodeLabel →

Set NodeLabel → Set NodeLabel
bf_traverse g seen nu =

if nu == {}
then seen
else let seen’ = union seen nu

allNbr = parFold union (parMap (nbrs g) nu)
nu’ = difference allNbr seen’

in bf_traverse g seen’ nu’

-- Next we traverse the connected component,
-- starting with the vertex ‘profile0’:
ccmp = bf_traverse profiles {} {profile0}
result = parMap analyze ccmp

Figure 1. A purely functional Haskell program that maps the analyze
function over the connected component of the profiles graph that is
reachable from the node profile0. Although component discovery pro-
ceeds in parallel, results of analyze are not asynchronously available to
other computations, inhibiting pipelining.
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Figure 2. Example lattices: (a) IVar containing a natural number; (b) pair
of natural-number-valued IVars; (c) positive integers ordered by ≤ (see
Section 7.1). Subfigure (b) is annotated with example threshold sets that
would correspond to a blocking read of the first or second element of the
pair (see Sections 3.3 and 4.2). Any state transition crossing the “tripwire”
for getSnd causes it to unblock and return a result.

sections, in Section 6 we give an LVar-based solution to our chal-
lenge problem, implemented using our Haskell LVars library, along
with a performance evaluation.

3. Lattices, Stores, and Determinism
As a minimal substrate for LVars, we introduce λLVar, a parallel call-
by-value λ-calculus extended with a store and with communication
primitives put and get that operate on data in the store. The class
of programs that we are interested in modeling with λLVar are those
with explicit effectful operations on shared data structures, in which
subcomputations may communicate with each other via the put and
get operations.

In this setting of shared mutable state, the trick that λLVar em-
ploys to maintain determinism is that stores contain LVars, which
are a generalization of IVars.6 Whereas IVars are single-assignment

6 IVars are so named because they are a special case of I-structures [4]—
namely, those with only one cell.



variables—either empty or filled with an immutable value—an
LVar may have an arbitrary number of states forming a setD, which
is partially ordered by a relation v. An LVar can take on any se-
quence of states from D, so long as that sequence respects the par-
tial order—that is, updates to the LVar (made via the put operation)
are inflationary with respect to v. Moreover, the get operation al-
lows only limited observations of the LVar’s state. In this section,
we discuss how lattices and stores work in λLVar and explain how
the semantics of put and get together enforce determinism in λLVar
programs.

3.1 Lattices
The definition of λLVar is parameterized by the choice ofD: to write
concrete λLVar programs, one must specify the set of LVar states
that one is interested in working with, and an ordering on those
states. Therefore λLVar is actually a family of languages, rather than
a single language.

Formally, D is a bounded join-semilattice augmented with a
greatest element >. That is, D has the following structure:

• D has a least element ⊥, representing the initial “empty” state
of an LVar.
• D has a greatest element >, representing the “error” state that

results from conflicting updates to an LVar.
• D comes equipped with a partial order v, where ⊥ v d v >

for all d ∈ D.
• Every pair of elements in D has a least upper bound (lub)
t. Intuitively, the existence of a lub for every two elements
in D means that it is possible for two subcomputations to
independently update an LVar, and then deterministically merge
the results by taking the lub of the resulting two states.

Virtually any data structure to which information is added gradually
can be represented as a lattice, including pairs, arrays, trees, maps,
and infinite streams. In the case of maps or sets, t could be defined
simply as union; for pointer-based data structures like tries, it could
allow for unification of partially-initialized structures.

Figure 2 gives three examples of lattices for common data
structures. The simplest example of a useful lattice is one that
represents the state space of a single-assignment variable (an IVar).
A natural-number-valued IVar, for instance, would correspond to
the lattice in Figure 2(a), that is,

D = ({>,⊥} ∪ N,v),

where the partial order v is defined by setting ⊥ v d v > and
d v d for all d ∈ D. This is a lattice of height three and infinite
width, where the naturals are arranged horizontally. After the initial
write of some n ∈ N, any further conflicting writes would push the
state of the IVar to > (an error). For instance, if one thread writes
2 and another writes 1 to an IVar (in arbitrary order), the second of
the two writes would result in an error because 2 t 1 = >.

In the lattice of Figure 2(c), on the other hand, the > state can
never be reached, because the least upper bound of any two writes
is just the maximum of the two. For instance, if one thread writes 2
and another writes 1, the resulting state will be 2, since 2 t 1 = 2.
Here, the unreachability of > models the fact that no conflicting
updates can occur to the LVar.

3.2 Stores
During the evaluation of a λLVar program, a store S keeps track of
the states of LVars. Each LVar is represented by a binding from a
location l, drawn from a set Loc, to its state, which is some element
d ∈ D. Although each LVar in a program has its own state, the
states of all the LVars are drawn from the same lattice D. We can
do this with no loss of generality because lattices corresponding

to different types of LVars could always be unioned into a single
lattice (with shared > and ⊥ elements). Alternatively, in a typed
formulation of λLVar, the type of an LVar might determine the lattice
of its states.

Definition 1. A store is either a finite partial mapping S : Loc
fin→

(D − {>}), or the distinguished element >S .

We use the notation S[l 7→ d] to denote extending S with a binding
from l to d. If l ∈ dom(S), then S[l 7→ d] denotes an update to the
existing binding for l, rather than an extension. We can also denote
a store by explicitly writing out all its bindings, using the notation
[l1 7→ d1, . . . , ln 7→ dn]. The state space of stores forms a bounded
join-semilattice augmented with a greatest element, just as D does,
with the empty store ⊥S as its least element and >S as its greatest
element. It is straightforward to lift thev and t operations defined
on elements of D to the level of stores:

Definition 2. A store S is less than or equal to a store S′ (written
S vS S

′) iff:

• S′ = >S , or
• dom(S) ⊆ dom(S′) and for all l ∈ dom(S), S(l) v S′(l).

Definition 3. The least upper bound (lub) of two stores S1 and S2

(written S1 tS S2) is defined as follows:

• S1 tS S2 = >S iff there exists some l ∈ dom(S1)∩ dom(S2)
such that S1(l) t S2(l) = >.
• Otherwise, S1 tS S2 is the store S such that:

dom(S) = dom(S1) ∪ dom(S2), and
For all l ∈ dom(S):

S(l) =

8<: S1(l) t S2(l) if l ∈ dom(S1) ∩ dom(S2)
S1(l) if l /∈ dom(S2)
S2(l) if l /∈ dom(S1)

By Definition 3, if d1 t d2 = >, then [l 7→ d1]tS [l 7→ d2] = >S .
Notice that a store containing a binding l 7→ > can never arise
during the execution of a λLVar program, because (as we will see in
Section 4) an attempted write that would take the state of l to >
would raise an error before the write can occur.

3.3 Communication Primitives
The new, put, and get operations create, write to, and read from
LVars, respectively. The interface is similar to that presented by
mutable references:

• new extends the store with a binding for a new LVar whose initial
state is ⊥, and returns the location l of that LVar (i.e., a pointer
to the LVar).
• put takes a pointer to an LVar and a singleton set containing a

new state and updates the LVar’s state to the least upper bound
of the current state and the new state, potentially pushing the
state of the LVar upward in the lattice. Any update that would
take the state of an LVar to > results in an error.
• get performs a blocking “threshold” read that allows limited

observations of the state of an LVar. It takes a pointer to an LVar
and a threshold set Q, which is a non-empty subset of D that is
pairwise incompatible, meaning that the lub of any two distinct
elements in Q is >. If the LVar’s state d in the lattice is at or
above some d′ ∈ Q, the get operation unblocks and returns the
singleton set {d′}. Note that d′ is a unique element of Q, for if
there is another d′′ 6= d′ in the threshold set such that d′′ v d,
it would follow that d′ t d′′ v d 6= >, which contradicts the
requirement that Q be pairwise incompatible.



The intuition behind get is that it specifies a subset of the lattice
that is “horizontal”: no two elements in the threshold set can be
above or below one another. Intuitively, each element in the thresh-
old set is an “alarm” that detects the activation of itself or any state
above it. One way of visualizing the threshold set for a get op-
eration is as a subset of edges in the lattice that, if crossed, set
off the corresponding alarm. Together these edges form a “trip-
wire”. This visualization is pictured in Figure 2(b). The threshold
set {(⊥, 0), (⊥, 1), ...} (or a subset thereof) would pass the incom-
patibility test, as would the threshold set {(0,⊥), (1,⊥), ...} (or a
subset thereof), but a combination of the two would not pass.

Both get and put take and return sets. The fact that put takes
a singleton set and get returns a singleton set (rather than a value
d) may seem awkward; it is merely a way to keep the grammar for
values simple, and avoid including set primitives in the language
(e.g., for converting d to {d}).

3.4 Monotonic Store Growth and Determinism
In IVar-based languages, a store can only change in one of two
ways: a new binding is added at ⊥, or a previously ⊥ binding is
permanently updated to a meaningful value. It is therefore straight-
forward in such languages to define an ordering on stores and es-
tablish determinism based on the fact that stores grow monotoni-
cally with respect to the ordering. For instance, Featherweight CnC
[7], a single-assignment imperative calculus that models the Intel
Concurrent Collections (CnC) system, defines ordering on stores
as follows:7

Definition 4 (store ordering, Featherweight CnC). A store S is
less than or equal to a store S′ (written S vS S′) iff dom(S) ⊆
dom(S′) and for all l ∈ dom(S), S(l) = S′(l).

Our Definition 2 is reminiscent of Definition 4, but Definition 4
requires that S(l) and S′(l) be equal, instead of our weaker re-
quirement that S(l) v S′(l) according to the user-provided par-
tial order v. In λLVar, stores may grow by updating existing bind-
ings via repeated puts, so Definition 4 would be too strong; for
instance, if ⊥ @ d1 v d2 for distinct d1, d2 ∈ D, the relationship
[l 7→ d1] vS [l 7→ d2] holds under Definition 2, but would not hold
under Definition 4. That is, in λLVar an LVar could take on the state
d1 followed by d2, which would not be possible in Featherweight
CnC. We establish in Section 5 that λLVar remains deterministic de-
spite the relatively weakvS relation given in Definition 2. The keys
to maintaining determinism are the blocking semantics of the get

operation and the fact that it allows only limited observations of the
state of an LVar.

4. λLVar: Syntax and Semantics
The syntax and operational semantics of λLVar appear in Figures
3 and 4, respectively.8 As we have noted, both the syntax and se-
mantics are parameterized by the lattice D. The reduction relation
↪−→ is defined on configurations 〈S; e〉 comprising a store and an
expression. The error configuration, written error, is a unique ele-
ment added to the set of configurations, but we consider 〈>S ; e〉 to
be equal to error, for all expressions e. The metavariable σ ranges
over configurations.

Figure 4 shows two disjoint sets of reduction rules: those that
step to configurations other than error, and those that step to error.
Most of the latter set of rules merely propagate errors along. A
new error can only arise by way of the E-PARAPPERR rule, which
represents the joining of two conflicting subcomputations, or by

7 In Featherweight CnC, no store location is explicitly bound to⊥. Instead,
if l /∈ dom(S) then l is defined to be at ⊥.
8 We have implemented λLVar as a runnable PLT Redex [12] model, avail-
able in the LVars repository.

Given a lattice (D,v) with elements d ∈ D, least element ⊥, and
greatest element >:

configurations σ ::= 〈S; e〉 | error
expressions e ::= x | v | e e | new | put e e |

get e e | convert e
values v ::= l | Q | λx. e

threshold set literals Q ::= {d1, d2, . . .}
stores S ::= >S | [l1 7→ d1, . . . , ln 7→ dn]

(where di 6= >)

Figure 3. Syntax for λLVar.

way of the E-PUTVALERR rule, which applies when a put to a
location would take its state to >.

The rules E-NEW, E-PUTVAL/E-PUTVALERR, and E-GETVAL
respectively express the semantics of the new, put, and get opera-
tions described in Section 3.3. The incompatibility property of the
threshold set argument to get is enforced in the E-GETVAL rule by
the incomp(Q) premise, which requires that the least upper bound
of any two distinct elements in Q must be >.

The E-PUT-1/E-PUT-2 and E-GET-1/E-GET-2 rules allow for
reduction of subexpressions inside put and get expressions until
their arguments have been evaluated, at which time the E-PUTVAL
(or E-PUTVALERR) and E-GETVAL rules respectively apply. Ar-
guments to put and get are evaluated in arbitrary order, although
not simultaneously, for simplicity’s sake. However, it would be
straightforward to add E-PARPUT and E-PARGET rules to the
semantics that are analogous to E-PARAPP, should simultaneous
evaluation of put and get arguments be desired.

4.1 Fork-Join Parallelism
λLVar has an explicitly parallel reduction semantics: the E-PARAPP
rule in Figure 4 allows simultaneous reduction of the operator and
operand in an application expression, so that (eliding stores) the ap-
plication e1 e2 may step to e′1 e′2 if e1 steps to e′1 and e2 steps to
e′2. In the case where one of the subexpressions is already a value
or is otherwise unable to step (for instance, if it is a blocked get),
the reflexive E-REFL rule comes in handy: it allows the E-PARAPP
rule to apply nevertheless. When the configuration 〈S; e1 e2〉 takes
a step, e1 and e2 step as separate subcomputations, each beginning
with its own copy of the store S. Each subcomputation can update
S independently, and we combine the resulting two stores by taking
their least upper bound when the subcomputations rejoin. (Because
E-PARAPP and E-PARAPPERR perform truly simultaneous reduc-
tion, they have to address the subtle point of location renaming: lo-
cations created while e1 steps must be renamed to avoid name con-
flicts with locations created while e2 steps. We discuss the rename
metafunction and other issues related to renaming in Appendix A.)

Although the semantics admits such parallel reductions, λLVar
is still call-by-value in the sense that arguments must be fully
evaluated before function application (β-reduction, modeled by the
E-BETA rule) can occur. We can exploit this property to define a
syntactic sugar let par for parallel composition, which computes
two subexpressions e1 and e2 in parallel before computing e3:

let par x = e1

y = e2

in e3

4
= ((λx. (λy. e3)) e1) e2

Although e1 and e2 can be evaluated in parallel, e3 cannot be
evaluated until both e1 and e2 are values, because the call-by-
value semantics does not allow β-reduction until the operand is
fully evaluated, and because it further disallows reduction under
λ-terms (sometimes called “full β-reduction”). In the terminology



Given a lattice (D,v) with elements d ∈ D, least element ⊥, and greatest element >:

incomp(Q)
4
= ∀ a, b ∈ Q. (a 6= b =⇒ a t b = >) 〈S; e〉 ↪−→ 〈S′; e′〉

(where 〈S′; e′〉 6= error)

E-REFL

〈S; e〉 ↪−→ 〈S; e〉

E-PARAPP
〈S; e1〉 ↪−→ 〈S1; e

′
1〉 〈S; e2〉 ↪−→ 〈S2; e

′
2〉 〈Sr

1 ; e
′r
1 〉 = rename(〈S1; e

′
1〉, S2, S) S

r
1 tS S2 6= >S

〈S; e1 e2〉 ↪−→ 〈Sr
1 tS S2; e

′r
1 e

′
2〉

E-PUT-1
〈S; e1〉 ↪−→ 〈S1; e

′
1〉

〈S; put e1 e2〉 ↪−→ 〈S1; put e
′
1 e2〉

E-PUT-2
〈S; e2〉 ↪−→ 〈S2; e

′
2〉

〈S; put e1 e2〉 ↪−→ 〈S2; put e1 e
′
2〉

E-PUTVAL
S(l) = d2 d1 ∈ D d1 t d2 6= >
〈S; put l {d1}〉 ↪−→ 〈S[l 7→ d1 t d2]; {}〉

E-GET-1
〈S; e1〉 ↪−→ 〈S1; e

′
1〉

〈S; get e1 e2〉 ↪−→ 〈S1; get e
′
1 e2〉

E-GET-2
〈S; e2〉 ↪−→ 〈S2; e

′
2〉

〈S; get e1 e2〉 ↪−→ 〈S2; get e1 e
′
2〉

E-GETVAL
S(l) = d2 incomp(Q) Q ⊆ D d1 ∈ Q d1 v d2

〈S; get l Q〉 ↪−→ 〈S; {d1}〉

E-CONVERT
〈S; e〉 ↪−→ 〈S′; e′〉

〈S; convert e〉 ↪−→ 〈S′; convert e′〉

E-CONVERTVAL

〈S; convert v〉 ↪−→ 〈S; δ(v)〉

E-BETA

〈S; (λx. e) v〉 ↪−→ 〈S; e[x := v]〉

E-NEW

〈S; new〉 ↪−→ 〈S[l 7→ ⊥]; l〉
(l /∈ dom(S))

〈S; e〉 ↪−→ error

E-REFLERR

error ↪−→ error

E-PARAPPERR
〈S; e1〉 ↪−→ 〈S1; e

′
1〉 〈S; e2〉 ↪−→ 〈S2; e

′
2〉 〈Sr

1 ; e
′r
1 〉 = rename(〈S1; e

′
1〉, S2, S) S

r
1 tS S2 = >S

〈S; e1 e2〉 ↪−→ error

E-APPERR-1
〈S; e1〉 ↪−→ error

〈S; e1 e2〉 ↪−→ error

E-APPERR-2
〈S; e2〉 ↪−→ error

〈S; e1 e2〉 ↪−→ error

E-PUTERR-1
〈S; e1〉 ↪−→ error

〈S; put e1 e2〉 ↪−→ error

E-PUTERR-2
〈S; e2〉 ↪−→ error

〈S; put e1 e2〉 ↪−→ error

E-PUTVALERR
S(l) = d2 d1 ∈ D d1 t d2 = >

〈S; put l {d1}〉 ↪−→ error

E-GETERR-1
〈S; e1〉 ↪−→ error

〈S; get e1 e2〉 ↪−→ error

E-GETERR-2
〈S; e2〉 ↪−→ error

〈S; get e1 e2〉 ↪−→ error

E-CONVERTERR
〈S; e〉 ↪−→ error

〈S; convert e〉 ↪−→ error

Figure 4. An operational semantics for λLVar.

of parallel programming, a let par expression executes both a fork
and a join. Indeed, it is common for fork and join to be combined in
a single language construct, for example, in languages with parallel
tuple expressions such as Manticore [13].

Since let par expresses fork-join parallelism, the evaluation of
a program comprising nested let par expressions would induce
a runtime dependence graph like that pictured in Figure 5(a). The
λLVar language (minus put and get) can support any series-parallel
dependence graph. Adding communication through put and get

introduces “lateral” edges between branches of a parallel compu-
tation, as in Figure 5(b). This adds the ability to construct arbitrary
non-series-parallel dependency graphs, just as with first-class fu-
tures [26].

Because we do not reduce under λ-terms, we can sequentially
compose e1 before e2 by writing let = e1 in e2, which desugars
to (λ . e2) e1. Sequential composition is useful for, for instance,
allocating a new LVar before beginning a sequence of side-effecting
put and get operations on it.

4.2 Programming with put and get

For our first example of a λLVar program, we choose the elements
of our lattice to be pairs of natural-number-valued IVars, as shown
in Figure 2(b). We can then write the following program:

let p = new in

let = put p {(3, 4)} in
let v1 = get p {(⊥, n) | n ∈ N} in
. . . v1 . . .

(Example 1)

a = ...
b = ...

let par 

let par 

x = ...
y = ...

in ...
in ...

put

get

(a) (b)

Figure 5. A series-parallel graph induced by parallel λ-calculus evalua-
tion (a); a non-series-parallel graph induced by put/get operations (b).

This program creates a new LVar p and stores the pair (3, 4) in
it. (3, 4) then becomes the state of p. The premises of the E-
GETVAL reduction rule hold: S(p) = (3, 4); the threshold set
Q = {(⊥, n) | n ∈ N} is a pairwise incompatible subset ofD; and
there exists an element d1 ∈ Q such that d1 v (3, 4). In particular,
the pair (⊥, 4) is a member of Q, and (⊥, 4) v (3, 4). Therefore,
get p {(⊥, n) | n ∈ N} returns the singleton set {(⊥, 4)}, which
is a first-class value in λLVar that can, for example, subsequently be
passed to put.

Since threshold sets can be cumbersome to read, we can define
some convenient shorthands getFst and getSnd for working with



our lattice of pairs:

getFst p
4
= get p {(n,⊥) | n ∈ N}

getSnd p
4
= get p {(⊥, n) | n ∈ N}

The approach we take here for pairs generalizes to arrays of arbi-
trary size, with streams being the special case of unbounded arrays
where consecutive locations are written.

Querying incomplete data structures It is worth noting that
getSnd p returns a value even if the first entry of p is not filled in.
For example, if the put in the second line of (Example 1) had been
put p {(⊥, 4)}, the get expression would still return {(⊥, 4)}. It
is therefore possible to safely query an incomplete data structure—
say, an object that is in the process of being initialized by a con-
structor. However, notice that we cannot define a getFstOrSnd

function that returns if either entry of a pair is filled in. Doing so
would amount to passing all of the boxed elements of the lattice
in Figure 2(b) to get as a single threshold set, which would fail to
satisfiy the incompatibility criterion.

Blocking reads On the other hand, consider the following:

let p = new in

let = put p {(⊥, 4)} in
let par v1 = getFst p

= put p {(3, 4)}
in . . . v1 . . .

(Example 2)

Here getFst can attempt to read from the first entry of p before it
has been written to. However, thanks to let par, the getFst oper-
ation is being evaluated in parallel with a put operation that will
give it a value to read, so getFst simply blocks until put p {(3, 4)}
has been evaluated, at which point the evaluation of getFst p can
proceed.

In the operational semantics, this blocking behavior corre-
sponds to the last premise of the E-GETVAL rule not being sat-
isfied. In (Example 2), although the threshold set {(n,⊥) | n ∈ N}
is incompatible, the E-GETVAL rule cannot apply because there is
no state in the threshold set that is lower than the state of p in the
lattice—that is, we are trying to get something that is not yet there!
It is only after p’s state is updated that the premise is satisfied and
the rule applies.

4.3 Converting from Threshold Sets to λ-terms and Back
There are two worlds that λLVar values may inhabit: the world of
threshold sets, and the world of λ-terms. But if these worlds are
disjoint—if threshold set values are opaque atoms—certain pro-
grams are impossible to write. For example, implementing single-
assignment arrays in λLVar requires that arbitrary array indices can
be computed (e.g., as Church numerals) and converted to threshold
sets. Thus we parameterize our semantics by a conversion func-
tion, δ : v → v, exposed through the convert language form.
The convert function is arbitrary, without any particular structure,
similar to including an abstract set of primitive functions in the lan-
guage. It is optional in the sense that providing an identity or empty
function is acceptable, and leaves λLVar sensible but less expressive.
This is mainly a notational concern that does not have significant
implications for a real implementation.

5. Proof of Determinism for λLVar
Our main technical result is a proof of determinism for the λLVar
language. Most proofs are only sketched here; the complete proofs
appear in the companion technical report [17].

Frame rule (O’Hearn et al., 2001):

{p} c {q}
{p ∗ r} c {q ∗ r} (where no free variable in r is modified by c)

Lemma 1 (Independence), simplified:

〈S; e〉 ↪−→ 〈S′; e′〉
〈S tS S

′′; e〉 ↪−→ 〈S′ tS S
′′; e′〉

(S′′ non-conflicting with
〈S; e〉 ↪−→ 〈S′; e′〉)

Figure 7. Comparison of a standard frame rule with a simplified version
of the Independence lemma. The ∗ connective in the frame rule requires that
its arguments be disjoint. The Independence lemma generalizes ∗ to least
upper bound.

5.1 Supporting Lemmas
Figure 7 shows a frame rule, due to O’Hearn et al. [23], which
captures the idea that, given a program c with a precondition p that
holds before it runs and a postcondition q that holds afterward, a
disjoint condition r that holds before c runs will continue to hold
afterward. Moreover, the original postcondition q will continue
to hold. For λLVar, we can state and prove an analogous local
reasoning property. Lemma 1, the Independence lemma, says that if
the configuration 〈S; e〉 can step to 〈S′; e′〉, then the configuration
〈StS S

′′; e〉, where S′′ is some other store (e.g., one from another
subcomputation), can step to 〈S′tSS

′′; e′〉. Roughly speaking, the
Independence lemma allows us to “frame on” a larger store around
S and still finish the transition with the original result e′, which is
key to being able to carry out the determinism proof.

Lemma 1 (Independence). If 〈S; e〉 ↪−→ 〈S′; e′〉 (where 〈S′; e′〉 6=
error), then for all S′′ such that S′′ is non-conflicting with
〈S; e〉 ↪−→ 〈S′; e′〉 and S′ tS S

′′ 6= >S:
〈S tS S

′′; e〉 ↪−→ 〈S′ tS S
′′; e′〉.

Proof sketch. By induction on the derivation of 〈S; e〉 ↪−→
〈S′; e′〉, by cases on the last rule in the derivation.

The Clash lemma, Lemma 2, is similar to the Independence lemma,
but handles the case where S′ tS S

′′ = >S . It ensures that in that
case, 〈S tS S

′′; e〉 steps to error.

Lemma 2 (Clash). If 〈S; e〉 ↪−→ 〈S′; e′〉 (where 〈S′; e′〉 6=
error), then for all S′′ such that S′′ is non-conflicting with
〈S; e〉 ↪−→ 〈S′; e′〉 and S′ tS S

′′ = >S:
〈S tS S

′′; e〉 ↪−→ error.

Proof sketch. By induction on the derivation of 〈S; e〉 ↪−→
〈S′; e′〉, by cases on the last rule in the derivation.

Finally, Lemma 3 says that if a configuration 〈S; e〉 steps to error,
then evaluating e in some larger store will also result in error.

Lemma 3 (Error Preservation). If 〈S; e〉 ↪−→ error and S vS S
′,

then 〈S′; e〉 ↪−→ error.

Proof sketch. By induction on the derivation of 〈S; e〉 ↪−→ error,
by cases on the last rule in the derivation.

Non-conflicting stores In the Independence and Clash lemmas,
S′′ must be non-conflicting with the original transition 〈S; e〉 ↪−→
〈S′; e′〉. We say that a store S′′ is non-conflicting with a transition
〈S; e〉 ↪−→ 〈S′; e′〉 iff dom(S′′) does not have any elements in
common with dom(S′) − dom(S), which is the set of names of
new store bindings created between 〈S; e〉 and 〈S′; e′〉.
Definition 5. A store S′′ is non-conflicting with the transition
〈S; e〉 ↪−→ 〈S′; e′〉 iff (dom(S′)− dom(S)) ∩ dom(S′′) = ∅.



〈S ; e1 e2〉

〈Sa1
⊔S Sa2 

; ea1
 ea2

〉 〈Sb1
⊔S Sb2 

; eb1 eb2〉

σc

〈S ; e1〉

〈Sa1
; ea1

〉 〈Sb1
; eb1〉

σc1

〈S ; e2〉

〈Sa2
; ea2

〉 〈Sb2
; eb2〉

σc2(= 〈Sc1
; ec1〉 or error) (= 〈Sc2

; ec2〉 or error)

By induction hypothesis, there exist σc1
, σc2

 such that To show: There exists σc such that

Figure 6. Diagram of the subcase of Lemma 4 in which the E-PARAPP rule is the last rule in the derivation of both σ ↪−→ σa and σ ↪−→ σb. We are
required to show that, if the configuration 〈S; e1 e2〉 steps by E-PARAPP to two different configurations, 〈Sa1tSSa2 ; ea1 ea2 〉 and 〈Sb1tSSb2 ; eb1 eb2 〉,
then they both step to some third configuration σc.

The purpose of the non-conflicting requirement is to rule out lo-
cation name conflicts caused by allocation. It is possible to meet
this non-conflicting requirement by applying the rename meta-
function, which we define and prove the safety of in Appendix A.

Requiring that a store S′′ be non-conflicting with a transition
〈S; e〉 ↪−→ 〈S′; e′〉 is not as restrictive a requirement as it appears
to be at first glance: it is fine for S′′ to contain bindings for locations
that are bound in S′, as long as they are also locations bound in
S. In fact, they may even be locations that were updated in the
transition from 〈S; e〉 to 〈S′; e′〉, as long as they were not created
during that transition. In other words, given a store S′′ that is non-
conflicting with 〈S; e〉 ↪−→ 〈S′; e′〉, it may still be the case that
dom(S′′) has elements in common with dom(S), and with the
subset of dom(S′) that is dom(S).

5.2 Diamond Lemma
Lemma 4 does the heavy lifting of our determinism proof: it es-
tablishes the diamond property, which says that if a configuration
steps to two different configurations, there exists a single third con-
figuration to which those configurations both step. Here, again, we
rely on the ability to safely rename locations in a configuration, as
discussed in Appendix A.

Lemma 4 (Diamond). If σ ↪−→ σa and σ ↪−→ σb, then there
exists σc such that either:

• σa ↪−→ σc and σb ↪−→ σc, or
• there exists a safe renaming σ′b of σb with respect to σ ↪−→ σb,

such that σa ↪−→ σc and σ′b ↪−→ σc.

Proof sketch. By induction on the derivation of σ ↪−→ σa, by
cases on the last rule in the derivation. Renaming is only necessary
in the E-NEW case.

The most interesting subcase is that in which the E-PARAPP
rule is the last rule in the derivation of both σ ↪−→ σa and
σ ↪−→ σb. Here, as Figure 6 illustrates, appealing to the induc-
tion hypothesis alone is not enough to complete the case, and Lem-
mas 1, 2, and 3 all play a role. For instance, suppose we have from
the induction hypothesis that 〈Sa1 ; ea1〉 steps to 〈Sc1 ; ec1〉. To
complete the case, we need to show that 〈Sa1 tS Sa2 ; ea1 ea2〉
can take a step by the E-PARAPP rule. But for E-PARAPP to apply,
we need to show that ea1 can take a step beginning in the larger
store of Sa1 tS Sa2 . To do so, we can appeal to Lemma 1, which
allows us to “frame on” the additional store Sa2 that has resulted
from a parallel subcomputation.

We can readily restate Lemma 4 as Corollary 1:

Corollary 1 (Strong Local Confluence). If σ ↪−→ σ′ and σ ↪−→
σ′′, then there exist σc, i, j such that σ′ ↪−→i σc and σ′′ ↪−→j σc

and i ≤ 1 and j ≤ 1.

Proof. Choose i = j = 1. The proof follows immediately from
Lemma 4.

5.3 Confluence Lemmas and Determinism
With Lemma 4 in place, we can straightforwardly generalize its
result to arbitrary numbers of steps by induction on the number of
steps, as Lemmas 5, 6, and 7 show. 9

Lemma 5 (Strong One-Sided Confluence). If σ ↪−→ σ′ and
σ ↪−→m σ′′, where 1 ≤ m, then there exist σc, i, j such that
σ′ ↪−→i σc and σ′′ ↪−→j σc and i ≤ m and j ≤ 1.

Proof sketch. By induction on m. In the base case of m = 1, the
result is immediate from Corollary 1.

Lemma 6 (Strong Confluence). If σ ↪−→n σ′ and σ ↪−→m σ′′,
where 1 ≤ n and 1 ≤ m, then there exist σc, i, j such that
σ′ ↪−→i σc and σ′′ ↪−→j σc and i ≤ m and j ≤ n.

Proof sketch. By induction on n. In the base case of n = 1, the
result is immediate from Lemma 5.

Lemma 7 (Confluence). If σ ↪−→∗ σ′ and σ ↪−→∗ σ′′, then there
exists σc such that σ′ ↪−→∗ σc and σ′′ ↪−→∗ σc.

Proof. Strong Confluence (Lemma 6) implies Confluence.

Theorem 1 (Determinism). If σ ↪−→∗ σ′ and σ ↪−→∗ σ′′,
and neither σ′ nor σ′′ can take a step except by E-REFL or E-
REFLERR, then σ′ = σ′′.

Proof. We have from Lemma 7 that there exists σc such that
σ′ ↪−→∗ σc and σ′′ ↪−→∗ σc. Since σ′ and σ′′ can only step
to themselves, we must have σ′ = σc and σ′′ = σc, hence
σ′ = σ′′.

5.4 Discussion: Termination
Above we have followed Budimlić et al. [7] in treating determinism
separately from the issue of termination. Yet one might legitimately
be concerned that in λLVar, a configuration could have both an infi-
nite reduction path and one that terminates with a value. Theorem 1
says that if two runs of a given λLVar program reach configurations
where no more reductions are possible (except by reflexive rules),
then they have reached the same configuration. Hence Theorem 1
handles the case of deadlocks already: a λLVar program can dead-
lock (e.g., with a blocked get), but it will do so deterministically.

9 Lemmas 5, 6, and 7 are nearly identical to the corresponding lemmas in the
proof of determinism for Featherweight CnC given by Budimlić et al. [7].
We also reuse Budimlić et al.’s naming conventions for Lemmas 1 through
4, but they differ considerably in our setting due to the generality of LVars.



-- l_acc is an LVar "output parameter":
bf_traverse :: ISet NodeLabel → Graph →

NodeLabel → Par ()
bf_traverse l_acc g startV =

do putInSet l_acc startV
loop {} {startV}

where loop seen nu =
if nu == {}
then return ()
else do

let seen’ = union seen nu
allNbr ← parMap (nbrs g) nu
allNbr’ ← parFold union allNbr
let nu’ = difference allNbr’ seen’
-- Add to the accumulator:
parMapM (putInSet l_acc) nu’
loop seen’ nu’

-- The function ‘analyze’ is applied to everything
-- that is added to the set ‘analyzeSet’:
go = do analyzedSet ← newSetWith analyze

res ← bf_traverse analyzedSet profiles profile0

Figure 8. An example Haskell program, written using our LVars library,
that maps a computation over a connected component using a monotoni-
cally growing set variable. The code is written in a strict style, using the
Par monad for parallelism. The use of the set variable enables modularity
and safe pipelining. Consumers can safely asynchronously execute work
items put into analyzedSet.

However, Theorem 1 has nothing to say about livelocks, in
which a program reduces infinitely. It would be desirable to have
a consistent termination property which would guarantee that if
one run of a given λLVar program terminates with a non-error re-
sult, then every run will. We conjecture (but do not prove) that such
a consistent termination property holds for λLVar. Such a property
could be paired with Theorem 1 to guarantee that if one run of a
given λLVar program terminates in a non-error configuration σ, then
every run of that program terminates in σ. (The “non-error config-
uration” condition is necessary because it is possible to construct a
λLVar program that can terminate in error on some runs and diverge
on others. By contrast, our existing determinism theorem does not
have to treat error specially.)

6. Prototype Implementation and Evaluation
We have implemented a prototype LVars library based on the
monad-par Haskell library, which provides the Par monad [22].
Our library, together with example programs and preliminary
benchmarking results, is available in in the LVars repository. The
relationship to λLVar is somewhat loose: for instance, while evalu-
ation in λLVar is always strict, our library allows lazy, pure Haskell
computations along with strict, parallel monadic computations.

A layered implementation Use of our LVars library typically in-
volves two parties: first, the data structure author who uses the li-
brary directly and provides an implementation of a specific mono-
tonic data structure (e.g., a monotonically growing hashmap), and,
second, the application writer who uses that data structure. Only
the application writer receives a determinism guarantee; it is the
data structure author’s obligation to ensure that the states of their
data structure form a lattice and that it is only accessible via the
equivalent of put and get.

The data structure author uses an interface provided by our
LVars library, which provides core runtime functionality: thread
scheduling and tracking of threads blocked on get operations. Con-
cretely, the data structure author imports our library and reexports
a limited interface specific to their data structure (e.g., for sets,
putInSet and waitSetSizeThreshold). In fact, our library provides

three different runtime interfaces for the data structure author to
choose among. These “layered” interfaces provide the data struc-
ture author with a shifting trade-off between the ease of meeting
their proof obligation, and attainable performance:

1. Pure LVars: Here, each LVar is a single mutable container
(an IORef) containing a pure value. This requires only that
a library writer select a purely functional data structure and
provide a join

10 function for it and a threshold predicate for
each get operation. These pure functions are easiest to validate,
for example, using the popular QuickCheck [? ] tool.

2. IO LVars: Pure data structures in mutable containers cannot
always provide the best performance for concurrent data struc-
tures. Thus we provide a more effectful interface. With it, data
structures are represented in terms of arbitrary mutable state;
performing a put requires an update action (IO) and a get re-
quires an effectful polling function that will be run after any put

to the LVar, to determine if the get can unblock.

3. Scalable LVars: Polling each blocked get upon any put is not
very precise. If the data structure author takes on yet more
responsibility, they can use our third interface to reduce con-
tention by managing the storage of blocked computations and
threshold functions themselves. For example, a concurrent set
might store a waitlist of blocked continuations on a per-element
basis, rather than using one waitlist for the entire LVar, as in
layers (1) and (2).

The support provided to the data structure author declines with
each of these layers, with the final option providing only parallel
scheduling, and little help with defining the specific LVar data struc-
ture. But this progressive cost/benefit tradeoff can be beneficial for
prototyping and then refining data structure implementations.

Revisiting our breadth-first traversal example In Section 2, we
proposed using LVars to implement a program that performs a
breadth-first traversal of a connected component of a graph, map-
ping a function over each node in the component. Figure 8 gives a
version of this program implemented using our LVars library. It per-
forms a breadth-first traversal of the profiles graph with effectful
put operations on a shared set variable. This variable, analyzedSet,
has to be modified multiple times by putInSet and thus can-
not be an IVar.11 The callback function analyze is “baked into”
analyzedSet and may run as soon as new elements are inserted. (In
the λLVar calculus, analyze could be built into the convert func-
tion and applied to the result of get.) Our implementation uses the
“Pure LVars” runtime layer described above: analyzedSet is noth-
ing more than a tree-based data structure (Data.Set) stored in a
mutable location.

Preliminary benchmarking results We compared the perfor-
mance of the LVar-based implementation of bf_traverse against
the version in Figure 1, which we ran using the
Control.Parallel.Strategies library [21], version 3.2.0.3. (De-
spite being a simple algorithm, even breadth-first search by itself
is considered a useful benchmark; in fact, the well-known “Graph
500” [? ] benchmark is exactly breadth-first search.)

We evaluated the Strategies and LVar versions of bf_traverse
by running both on a local random directed graph of 40,000 nodes
and 320,000 edges (and therefore an average degree of 8), simu-
lating the analyze function by doing a specified amount of work
for each node, which we varied from 1 to 32 microseconds. Fig-

10 Type class Algebra.Lattice.JoinSemiLattice.
11 Indeed, there are subtle problems with encoding a set even as a linked
structure of IVars. For example, if it is represented as a tree, who writes the
root?



Figure 9. Running time comparison of Strategies-based and LVar-based implementations of bf_traverse, running on 1, 2, 3, and 4 cores on an Intel Xeon
Core i5 3.1GHz (smaller is better).

ure 9 shows the results of our evaluation on 1, 2, 3, and 4 cores.
Although both the Strategies and LVar versions enjoyed a speedup
as we added parallel resources, the LVar version scaled particularly
well. A subtler, but interesting point is that, in the Strategies ver-
sion, it took an average of 64.64 milliseconds for the first invoca-
tion of analyze to begin running after the program began, whereas
in the LVar version, it took an average of only 0.18 milliseconds,
indicating that the LVar version allows work to be pipelined.

7. Safe, Limited Nondeterminism
In practice, a major problem with nondeterministic programs is that
they can silently go wrong. Most parallel programming models are
unsafe in this sense, but we may classify a nondeterministic lan-
guage as safe if all occurrences of nondeterminism—that is, exe-
cution paths that would yield a wrong answer—are trapped and re-
ported as errors. This notion of safe nondeterminism is analogous
to the concept of type safety: type-safe programs can throw excep-
tions, but they will not “go wrong”. We find that there are various
extensions to a deterministic language that make it safely nonde-
terministic.12 Here, we will look at one such extension: exact but
destructive observations.

We begin by noting that when the state of an LVar has come
to rest—when no more puts will occur—then its final value is a
deterministic function of program inputs, and is therefore safe to
read directly, rather than through a thresholded get. For instance,
once no more elements will be added to the l_acc accumulator
variable in the bf_traverse example of Figure 8, it is safe to read
the exact, complete set contents.

The problem is determining automatically when an LVar has
come to rest; usually, the programmer must determine this based
on the control flow of the program. We may, however, provide a
mechanism for the programmer to place their bet. If the value of an
LVar is indeed at rest, then we do no harm to it by corrupting its

12 For instance, while not recognized explicitly by the authors as such, a
recent extension to CnC for memory management [25] incidentally fell into
this category.

state in such a way that further modification will lead to an error.
We can accomplish this by adding an extra state, called probation,
to D. The lattice defined by the relation v is extended thus:

probation v >
∀d ∈ D. d 6v probation

We then propose a new operation, consume, that takes a pointer
to an LVar l, updates the store, setting l’s state to probation, and
returns a singleton set containing the exact previous state of l, rather
than a lower bound on that state. The idea is to ensure that, after a
consume, any further operations on l will go awry: put operations
will attempt to move the state of l to >, resulting in error.

In the following example program, we use consume to perform
an asynchronous sum reduction over a known number of inputs. In
such a reduction, data dependencies alone determine when the re-
duction is complete, rather than control constructs such as parallel
loops and barriers.

let cnt = new in

let sum = new in

let par p1 = (bump3 sum; put {a} cnt)

p2 = (bump4 sum; put {b} cnt)

p3 = (bump5 sum; put {c} cnt)

r = (get cnt {a, b, c}; consume sum)

in . . . r . . .
(Example 3)

In (Example 3), we use semicolon for sequential composition:
e1; e2 is sugar for let = e1 in e2. We also assume a new syntac-
tic sugar in the form of a bump operation that takes a pointer to an
LVar representing a counter and increments it by one, with bumpn l
as an additional shorthand for n consecutive bumps to l. Meanwhile,
the cnt LVar uses the power-set lattice of the set {a, b, c} to track
the completion of the p1, p2 and p3 “threads”.



Before the call to consume, get cnt {a, b, c} serves as a syn-
chronization mechanism, ensuring that all increments are complete
before the value is read. Three writers and one reader execute in
parallel, and only when all writers complete does the reader return
the sum, which in this case will be 3 + 4 + 5 = 12.

The good news is that (Example 3) is deterministic; it will
always return the same value in any execution. However, the
consume primitive in general admits safe nondeterminism, meaning
that, while all runs of the program will terminate with the same
value if they terminate without error, some runs of the program
may terminate in error, in spite of other runs completing suc-
cessfully. To see how an error might occur, imagine an alternate
version of (Example 3) in which get cnt {a, b, c} is replaced by
get cnt {a, b}. This version would have insufficient synchroniza-
tion. The program could run correctly many times—if the bumps
happen to complete before the consume operation executes—and
yet step to error on the thousandth run. Yet, with safe nondetermin-
ism, it is possible to catch and respond to this error, for example
by rerunning in a debug mode that is guaranteed to find a valid
execution if it exists, or by using a data-race detector which will
reproduce all races in the execution in question. In fact, the sim-
plest form of error handling is to simply retry (or rerun from the
last snapshot)—most data races make it into production only be-
cause they occur rarely. We have implemented a proof-of-concept
interpreter and data-race detector for λLVar extended with consume,
available in the LVars repository.

7.1 Desugaring bump

In this section we explain how the bump operation for LVar counters—
as well as an underlying capability for generating unique IDs—can
be implemented in λLVar.

Strictly speaking, if we directly used the atomic counter lattice
of Figure 2(c) for the sum LVar in (Example 3), we would not be
able to implement bump. Rather than use that lattice directly, then,
we can simulate it using a power-set lattice over an arbitrary alpha-
bet of symbols {s1, s2, s3, . . .}, ordered by subset inclusion. LVars
whose states occupy such a lattice encode natural numbers using
the cardinality of the subset.13 With this encoding, incrementing a
shared variable l requires put l {α}, where α ∈ {s1, s2, s3, . . .}
and α has not previously been used. Rather than requiring the pro-
grammer to be responsible for creating a unique α for each par-
allel contribution to the counter, though, we would like to be able
to provide a language construct unique that, when evaluated, re-
turns a singleton set containing a single unique element of the al-
phabet: {α}. The expression bump l could then simply desugar to
put l unique.

Fortunately, unique is implementable: well-known techniques
exist for generating a unique (but schedule-invariant and determin-
istic) identifier for a given point in a parallel execution. One such
technique is to reify the position of an operation inside a tree (or
DAG) of parallel evaluations. The Cilk Plus parallel programming
language refers to this notion as the pedigree of an operation and
uses it to seed a deterministic parallel random number generator
[20].

Figure 10 gives one possible set of rewrite rules for a transfor-
mation that uses the pedigree technique to desugar λLVar programs
containing unique. Bearing some resemblance to a continuation-
passing-style transformation [11], it creates a tree that tracks the
dynamic evaluation of applications. We have implemented this
transformation as a part of our interpreter for λLVar extended with
consume. With unique in place, we can write programs like the
following, in which two parallel computations increment the same

13 Of course, just as with an encoding like Church numerals, this encoding
would never be used by a realistic implementation.

JuniqueK = λp. convert p

JvK = λp. v

JQK = λp. Q

Jλv. eK = λp. λv. JeK

JnewK = λp. new

Je1 e2K = λp. ((Je1K L:p) (Je2K R:p) J :p)

Jput e1 e2K = λp. put (Je1K L:p) (Je2K R:p)

Jget e1 e2K = λp. get (Je1K L:p) (Je2K R:p)

Jconvert eK = λp. convert (JeK p)

Figure 10. Rewrite rules for desugaring λLVar expressions with the
unique construct to plain λLVar expressions without unique. Here we use
“L:”, “R:”, and “J :” to cons onto the front of a list that represents a path
within a fork/join DAG. These prefixes mean, respectively, “left branch”,
“right branch”, or “after the join” of the two branches. This transformation
requires a λ-calculus encoding of lists, as well as a definition of convert
that is an injective function from these list values onto the alphabet of
unique symbols.

counter:
let sum = new in

let par p1 = (put sum unique; put sum unique)

p2 = (put sum unique)

in ...

In this case, the p1 and p2 “threads” will together increment the
sum by three. Notice that consecutive increments performed by p1

are not atomic.

8. Related Work
Work on deterministic parallel programming models is long-
standing. In addition to the single-assignment and KPN models
already discussed, here we consider a few recent contributions to
the literature.

Deterministic Parallel Java (DPJ) DPJ [6] is a deterministic lan-
guage consisting of a system of annotations for Java code. A so-
phisticated region-based type system ensures that a mutable region
of the heap is, essentially, passed linearly to an exclusive writer.
While a linear type system or region system like that of DPJ could
be used to enforce single assignment statically, accommodating
λLVar’s semantics would involve parameterizing the type system by
the user-specified lattice.

DPJ also provides a way to unsafely assert that operations com-
mute with one another (using the commuteswith form) to enable
concurrent mutation. However, DPJ does not provide direct sup-
port for modeling message-passing (e.g., KPNs) or asynchronous
communication within parallel regions. Finally, a key difference
between the λLVar model and DPJ is that λLVar retains determinism
by restricting what can be read or written, rather than by restricting
the semantics of reads and writes themselves.

Concurrent Revisions The Concurrent Revisions (CR) [19] pro-
gramming model uses isolation types to distinguish regions of the
heap shared by multiple mutators. Rather than enforcing exclu-
sive access, CR clones a copy of the state for each mutator, using
a deterministic policy for resolving conflicts in local copies. The
management of shared variables in CR is tightly coupled to a fork-
join control structure, and the implementation of these variables
is similar to reduction variables in other languages (e.g., Cilk hy-
perobjects). CR charts an important new area in the deterministic-
parallelism design space, but one that differs significantly from



λLVar. CR could be used to model similar types of data structures—
if versioned variables used least upper bound as their merge func-
tion for conflicts—but effects would only become visible at the end
of parallel regions, rather than λLVar’s asynchronous communica-
tion within parallel regions.

Bloom and BloomL In the distributed systems literature, eventu-
ally consistent systems [28] leverage the idea of monotonicity to
guarantee that, for instance, nodes in a distributed database eventu-
ally agree. The Bloom language for distributed database program-
ming [3] guarantees eventual consistency for distributed data col-
lections that are updated monotonically. The initial formulation of
Bloom had a notion of monotonicity based on set containment,
analogous to the store ordering for single-assignment languages
given in Definition 4. However, recent work by Conway et al. [10]
generalizes Bloom to a more flexible lattice-parameterized system,
BloomL, in a manner analogous to our generalization from IVars
to LVars. BloomL comes with a library of built-in lattice types
and also allows for users to implement their own lattice types as
Ruby classes. Although Conway et al. do not give a proof of even-
tual consistency for BloomL, our determinism result for λLVar sug-
gests that their generalization is indeed safe. Moreover, although
the goals of BloomL differ from those of LVars, we believe that
BloomL bodes well for programmers’ willingness to use lattice-
based data structures, and lattice-parameterized languages based on
them, to address real-world programming challenges.

9. Conclusion
As single-assignment languages and Kahn process networks demon-
strate, monotonicity serves as the foundation of deterministic par-
allelism. Taking monotonicity as a starting point, our work general-
izes single assignment to monotonic multiple assignment parame-
terized by a user-specified lattice. By combining monotonic writes
with threshold reads, we get a shared-state parallel programming
model that generalizes and unifies an entire class of monotonic
languages suitable for asynchronous, data-driven applications. Our
model is provably deterministic, and further provides a founda-
tion for exploration of limited nondeterminism. Future work will
improve upon our prototype implementation, formally establish the
relationship between LVars and other deterministic parallel models,
investigate consistent termination for λLVar, and prove the limited
nondeterminism property of λLVar extended with consume.
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A. Safe Renaming
When λLVar programs split into two subcomputations via the E-
PARAPP rule, the subcomputations’ stores are merged (via the lub
operation) as they are running. Therefore we need to ensure that the
following two properties hold:

1. Location names created before a split still match up with each
other after a merge.

2. Location names created by each subcomputation while they
are running independently do not match up with each other
accidentally—i.e., they do not collide.

Property (2) is why it is necessary to rename locations in the
E-PARAPP (and E-PARAPPERR) rule. This renaming is accom-
plished by a call to the rename metafunction, which, for each loca-
tion name l generated during the reduction 〈S; e1〉 ↪−→ 〈S1; e

′
1〉,

generates a name that is not yet used on either side of the split and
substitutes that name into 〈S1; e

′
1〉 in place of l.14 We arbitrarily

choose to rename locations created during the reduction of 〈S; e1〉,
but it would work just as well to rename those created during the
reduction of 〈S; e2〉.
Definition 6. The rename metafunction is defined as follows:

rename(·, ·, ·) : σ × S × S → σ

rename(〈S′; e〉, S′′, S)
4
= 〈S′; e〉[l1 := l′1] . . . [ln := l′n]

where:

• {l1, . . . , ln} = dom(S′)− dom(S), and
• {l′1, . . . , l′n} is a set such that l′i /∈ (dom(S′) ∪ dom(S′′)) for
i ∈ [1..n].

However, property (1) means that we cannot allow α-renaming
of bound locations in a configuration to be done at will. Rather,
renaming can only be done safely if it is done in the context of a
transition from configuration to configuration. Therefore, we define
a notion of safe renaming with respect to a transition.

Definition 7. A renaming of a configuration 〈S; e〉 is the sub-
stitution into 〈S; e〉 of location names l′1, . . . , l′n for some subset
l1, . . . , ln of dom(S).

Definition 8. A safe renaming of 〈S′; e′〉with respect to 〈S; e〉 ↪−→
〈S′; e′〉 is a renaming of 〈S′; e′〉 in which the locations l1, . . . , ln
being renamed are the members of the set dom(S′) − dom(S),
and the names l′1, . . . , l′n that are replacing l1, . . . , ln do not appear
in dom(S′).

14 Since λLVar locations are drawn from a distinguished set Loc, they cannot
occur in the user-specified D—that is, locations in λLVar may not contain
pointers to other locations. Likewise, λ-bound variables in e are never
location names. Therefore, substitutions like the one in Definition 6 will
not capture bound occurrences of location names.

If 〈S′′; e′′〉 is a safe renaming of 〈S′; e′〉with respect to 〈S; e〉 ↪−→
〈S′; e′〉, then S′′ is by definition non-conflicting with 〈S; e〉 ↪−→
〈S′; e′〉.

A.1 Renaming Lemmas
With the aforementioned definitions in place, we can establish
the following two properties about renaming. Lemma 8 expresses
the idea that the names of locations created during a reduction
step are arbitrary within the context of that step. It says that if a
configuration 〈S; e〉 steps to 〈S′; e′〉, then 〈S; e〉 can also step to
configurations that are safe renamings of 〈S′; e′〉 with respect to
〈S; e〉 ↪−→ 〈S′; e′〉.
Lemma 8 (Renaming of Locations During a Step). If 〈S; e〉 ↪−→
〈S′; e′〉 (where 〈S′; e′〉 6= error) and {l1, . . . , ln} = dom(S′)−
dom(S), then:

For all sets {l′1, . . . , l′n} such that l′i /∈ dom(S′) for i ∈ [1..n]:

〈S; e〉 ↪−→
〈Soldlocs[l

′
1 7→ S′(l1)] . . . [l

′
n 7→ S′(ln)]; e′[l1 := l′1] . . . [ln := l′n]〉

( 6= error),

where Soldlocs is defined as follows: dom(Soldlocs) = dom(S), and
for all l ∈ dom(Soldlocs), Soldlocs(l) = S′(l).

Proof sketch. By induction on the derivation of 〈S; e〉 ↪−→
〈S′; e′〉, by cases on the last rule in the derivation.

Finally, Lemma 9 says that in the circumstances where we use
the rename metafunction, the renaming it performs meets the
specification set by Lemma 8.

Lemma 9 (Safety of rename). If 〈S; e〉 ↪−→ 〈S′; e′〉 (where
〈S′; e′〉 6= error) and S′′ 6= >S , then:
〈S; e〉 ↪−→ rename(〈S′; e′〉, S′′, S).

Proof sketch. Straightforward application of Lemma 8.
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